Interactions between Bile Acids and Nuclear Receptors and Their Effects on Lipid Metabolism and Liver Diseases
نویسندگان
چکیده
1Division of Gastroenterology and Hepatology, Department of Internal Medicine, Edward Doisy Research Center, Saint Louis University School of Medicine, 1100 S. Grand Boulevard, St. Louis, MO 63104, USA 2Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, 3635 Vista Avenue, St. Louis, MO 63110, USA 3Clinica Medica “A. Murri”, Department of Interdisciplinary Medicine (DIM), University of Bari School of Medicine, Policlinico Hospital, Piazza G. Cesare 11, 70124 Bari, Italy 4Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University Health Sciences Center & Veterans Affairs Medical Center, P.O. Box 980341, Richmond, VA 23298, USA
منابع مشابه
Understanding the molecular actions of bile acid receptor activation for treating human liver disease
The interplay between the liver, the gastrointestinal tract and lipid metabolism is complex and not well understood, but bile acids are key players in these interactions. Bile acids are synthesized in the liver, used for lipid absorption in the small intestine, and then reabsorbed and returned to the liver via the portal vein (enterohepatic circulation). By activating the nuclear receptor farne...
متن کاملBile acids: regulation of synthesis.
Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important ...
متن کاملBile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism
The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are ...
متن کاملBile acid regulation of gene expression: roles of nuclear hormone receptors.
Bile acids derived from cholesterol and oxysterols derived from cholesterol and bile acid synthesis pathways are signaling molecules that regulate cholesterol homeostasis in mammals. Many nuclear receptors play pivotal roles in the regulation of bile acid and cholesterol metabolism. Bile acids activate the farnesoid X receptor (FXR) to inhibit transcription of the gene for cholesterol 7alpha-hy...
متن کاملBile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice.
The nuclear bile acid receptor FXR (farnesoid-X-receptor) has recently been implicated in the pathophysiology of non-alcoholic fatty liver disease because selective FXR-agonists improve glucose and lipid metabolism in rodent models of obesity. However, the regulation of FXR and other relevant nuclear receptors as well as their lipogenic target genes in fatty liver is still not revealed in detai...
متن کاملShort-Term Circadian Disruption Impairs Bile Acid and Lipid Homeostasis in Mice
BACKGROUND & AIMS Bile acids are physiological detergents that also activate nuclear receptors to regulate glucose and lipid homeostasis. Cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme that converts cholesterol to bile acids, is transcriptionally regulated by bile acids and circadian rhythms. Fasting, nutrients and the circadian clock critically control hepatic bile acid and lipi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012